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LEITER TO THE EDITOR 

Self-Fourier functions 
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Sowerby Research Centre, British Aerospace pic, FPC 267, Fillon, Bristol BSI2  lQW, U K  

Received 20 June 1991 

Abstract. The Gaussian and Dirac comb are often quoted as the only functions which are 
their own Fourier transform (m), f(u) = /'(U). We show that for arbitrary transformable 
g(x), the function f(x)=g(x)+p(-x)+B(x)+g(-x) is ifs own FT. We give physically 
reasonable examples and discuss some optical consequences. 

Some functions f ( x )  are their own Fourier transform (n), i.e., 

J ( u ) = f ( u )  

where 
+m 

f(u) = [ f ( x )  e2niux dx 
J -m 

is the n of f ( x ) .  Two examples are a Gaussian 

f(x) = e-rxz 

f(.) =e-="' 

and a Dirac comb 

f ( x )  = E  S(x- n) 

f(u) =I S ( u  - n). 

(3) 

(4) 

Call them self-Fourier functions ( s F F ~ ) .  The literature gives the impression that (3) 
and (4) are perhaps the only ones [l]. We wish to point out that there is an infinity 
of SFFS: given an arbitrary transformable function g(x), then the even function 

f ( x )  =g(x)+g(-x)+g(x)+g(-x) ( 5 )  

is an SFF, with FT 

JCU) = g ( u ) + g ( - u ) + g ( u ) + g ( - u ) .  (6) 

Equation (6) may be derived by taking the FT of the RHS of (S), using (2) and the 
delta-function 

, 
S(x,-x2)= exp[2rri(x,-x2)x]dx. (7) J 
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Figure 1. Self-Founer function f, = rect(x)+enc(x) 

In physical applications g and g are often different in nature (e.g. g is a signal and g 
its spectrum); thus combining g with g in ( 5 )  may seem unphysical and 'dimensionally' 
wrong. However, in (2) the variable U could as well be x', and x is a dummy variable 

separately are. 
Explicitly, 

which cou!d be g': thus f gf ( 5 )  2s phynica!!y re*son&!t. 2 fKfiCtigf i  2s dy 2nd g 

+m 

f (x)=g(x)+g(-x)+2 g(x') cos(2nx'x) dx' (8)  

is an SFF, 

f ( . ,= f (u ) .  
Examples of S F F ~  are 

f, = rect(x)+sinc(x) 
f2=A(x)+sinc2(x) 
c - =lxl I 7 i (1  I n -2 - 2 )  53-c I L , \ ' I  - 'U n , 
f4 = 1 + S(x) 

(9) 

familiar in physical analysis. We sketch f, in figure 1, with rect(x) = 1 for 1x1 sk and 

for 1x1 S 1 and = 0 for 1x1 > 1. Our one-dimensional analysis should be readily applicable 
io higher dimensions. 

We briefly state two optical applications (see [ 11 for background). If we make a 
transparency whose amplitude transmissivity is (proportional to) f(x) and use it as 
input to a coherent 2F Fourierprocessor, then the amplitude output is the n , S ( . x / h F ) .  
Thus if inputf(x) is an SFF, the output is a scaled image of the input; of the examples 
(10)-(13), f 2  is probably the easiest to realize optically. The second application is the 
design of laser resonator cavities. 

- -0  for Ixl>$, and sinc(x) =sin(mx)/(lrx); also, the triangle function A(x) = 1 -1xI 
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