Self-Fourier functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L1143
(http://iopscience.iop.org/0305-4470/24/19/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:25

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Self-Fourier functions

M J Caola

Sowerby Research Centre, British Aerospace plc, FPC 267, Filton, Bristol BS12 7QW, UK

Received 20 June 1991

Abstract

The Gaussian and Dirac comb are often quoted as the only functions which are their own Fourier transform (FT), $\bar{f}(u)=f(u)$. We show that for arbitrary transformable $g(x)$, the function $f(x)=g(x)+g(-x)+\bar{g}(x)+\bar{g}(-x)$ is its own FT. We give physically reasonable examples and discuss some optical consequences.

Some functions $f(x)$ are their own Fourier transform (FT), i.e.,

$$
\begin{equation*}
\bar{f}(u)=f(u) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{f}(u)=\int_{-\infty}^{+\infty} f(x) \mathrm{e}^{2 \pi i u x} \mathrm{~d} x \tag{2}
\end{equation*}
$$

is the FT of $f(x)$. Two examples are a Gaussian

$$
\begin{align*}
& f(x)=\mathrm{e}^{-\pi x^{2}} \\
& \bar{f}(u)=\mathrm{e}^{-\pi u^{2}} \tag{3}
\end{align*}
$$

and a Dirac comb

$$
\begin{align*}
& f(x)=\sum_{n} \delta(x-n) \tag{4}\\
& \bar{f}(u)=\sum_{n} \delta(u-n) .
\end{align*}
$$

Call them self-Fourier functions (SFFs). The literature gives the impression that (3) and (4) are perhaps the only ones [1]. We wish to point out that there is an infinity of SFFs: given an arbitrary transformable function $g(x)$, then the even function

$$
\begin{equation*}
f(x)=g(x)+g(-x)+\bar{g}(x)+\bar{g}(-x) \tag{5}
\end{equation*}
$$

is an SFF, with FT

$$
\begin{equation*}
\bar{f}(u)=g(u)+g(-u)+\bar{g}(u)+\bar{g}(-u) . \tag{6}
\end{equation*}
$$

Equation (6) may be derived by taking the FT of the RHS of (5), using (2) and the delta-function

$$
\begin{equation*}
\delta\left(x_{1}-x_{2}\right)=\int \exp \left[2 \pi \mathrm{i}\left(x_{1}-x_{2}\right) x\right] \mathrm{d} x \tag{7}
\end{equation*}
$$

Figure 1. Self-Fourier function $f_{1}=\operatorname{rect}(x)+\operatorname{sinc}(x)$.
In physical applications g and \bar{g} are often different in nature (e.g. g is a signal and \bar{g} its spectrum); thus combining g with \bar{g} in (5) may seem unphysical and 'dimensionally' wrong. However, in (2) the variable u could as well be x^{\prime}, and x is a dummy variable which could be u^{\prime} : thus f of (5) is as physically reasonable a function as g and \bar{g} separately are.

Explicitly,

$$
\begin{equation*}
f(x)=g(x)+g(-x)+2 \int_{-\infty}^{+\infty} g\left(x^{\prime}\right) \cos \left(2 \pi x^{\prime} x\right) \mathrm{d} x^{\prime} \tag{8}
\end{equation*}
$$

is an SFF,

$$
\begin{equation*}
\bar{f}(u)=f(u) . \tag{9}
\end{equation*}
$$

Examples of SFFs are

$$
\begin{align*}
& f_{1}=\operatorname{rect}(x)+\operatorname{sinc}(x) \tag{10}\\
& f_{2}=\Lambda(x)+\operatorname{sinc}^{2}(x) \tag{11}\\
& f_{3}=\mathrm{e}^{-|x|}+2 /\left(1+4 \pi^{2} x^{2}\right) \tag{12}\\
& f_{4}=1+\delta(x) \tag{13}
\end{align*}
$$

familiar in physical analysis. We sketch f_{1} in figure 1 , with rect $(x)=1$ for $|x| \leqslant \frac{1}{2}$ and $=0$ for $|x|>\frac{1}{2}$, and $\operatorname{sinc}(x)=\sin (\pi x) /(\pi x)$; also, the triangle function $\Lambda(x)=1-|x|$ for $|x| \leqslant 1$ and $=0$ for $|x|>1$. Our one-dimensional analysis should be readily applicable to higher dimensions.

We briefly state two optical applications (see [1] for background). If we make a transparency whose amplitude transmissivity is (proportional to) $f(x)$ and use it as input to a coherent $2 F$ Fourier processor, then the amplitude output is the $F T, \bar{f}(x / \lambda F)$. Thus if input $f(x)$ is an SFF, the output is a scaled image of the input; of the examples (10)-(13), f_{2} is probably the easiest to realize optically. The second application is the design of laser resonator cavities.

Reference

[1] Lipson S G and Lipson H 1981 Optical Physics (Cambridge: Cambridge University Press) pp 190-1, 307-9. Many other texts state equations (3) and (4) but do not discuss the possibility of other SFFs.

